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Abstract

Cardiovascular disease remains the leading cause of death in the Unit-
ed States and globally. Significant advances have been made through-
out the history of cardiology and the treatment of this disease; how-
ever, these efforts have not halted the alarming statistics. Emerging 
approaches, such as artificial intelligence applied to cardiac imaging, 
genetic testing, and genetic silencing, may offer essential additional 
steps in treating the disease. Moreover, new pathways of the disease 
are being identified, which differ from traditional risk factors and of-
fer a fresh, innovative approach. This paper focuses on a novel strat-
egy that includes identifying and treating multiple pathways of the 
disease using both new and traditional interventions. These interven-
tions include plaque-directed therapy rather than surrogate therapy, 
with the potential to mitigate consequences and possibly eradicate 
the disease through personalized, multi-approach treatments similar 
to those used in cancer treatment.
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Introduction

We aim to describe a pathway that may lead to better manage-
ment, mitigation, and eradication of coronary artery disease 
(CAD) and is consequences. Like many other advances, this 
possibility comes from the integration of advances and tech-
nologies that present radical changes and new opportunities.

It has been over 200 years since the description of the clin-

ical presentation of diseased coronary arteries, angina pectoris 
[1], by John Warren. It took decades and evolving advances 
to understand its relationship to coronary artery narrowing, 
how the balance between oxygen supply and demand results 
in the clinical presentation of chest pain, and how an acute 
obstruction leads to myocardial infarction. Invasive coronary 
artery angiography enabled real-time visualization of diseased 
coronary arteries, but it took decades before we focused on by-
passing the disease and addressing the actual cause of angina: 
narrowing of the coronary arteries.

The tools of angioplasty, followed by stenting and even-
tually drug-eluting stents, were developed over the course of 
decades. Finally, the actual cause of disease could be visual-
ized using intravascular ultrasound (IVUS) and optical co-
herence, which finally were able to characterize the cause 
of disease that corresponded to known histology. Simultane-
ously, computed tomography (CT) has evolved over the past 
five decades. When we initially used CT with primitive de-
vices, we captured coronary arteries for the first time on Polar-
oid paper with minimal resolution [2]. With the development 
of computed tomographic coronary angiography (CCTA), 
also known as coronary computed tomographic angiography 
(CTA) and its use, even without symptoms, we began to un-
derstand and finally monitor the disease from the development 
of non-calcified plaque [3] to calcification and narrowing [4]. 
Finally, tools based on augmented intelligence [5] and correla-
tion to intracoronary hemodynamics [6-8] has led to predict-
ing the need for revascularization [9, 10]. Coronary CTA has 
augmented and even replaced invasive angiography, as well as 
the ability to use medications to directly treat and monitor the 
disease, rather than rely on surrogate measures and predicting 
downstream major adverse cardiac events (MACEs) [11, 12].

With the simultaneous development of tools to understand 
the human genome and recent advances in gene manipulation 
and disease expression, we now have the opportunity to address 
the long-standing family history component - once considered 
an unmodifiable risk factor - through genetic intervention [13]. 
Taking together, these tools reinforce our existing understand-
ing that we can mitigate disease by addressing modifiable risk 
factors, using medications that affect the pathways of the dis-
ease, and now, with genetic manipulation, we can create a new 
and possible final platform of tools and knowledge to elimi-
nate the disease. One approach is to focus on the early identi-
fication of diseased arteries when the condition first appears, 
rather than treating all at-risk individuals with established 
methods. Many individuals with risk factors, elevated choles-
terol, and family histories never develop the disease because 
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the multiple pathways for atherosclerosis may not be present 
due to genetic variations. Individuals with no calcified or non-
calcified plaques tend to have excellent outcomes regardless of 
treatment. However, if individuals are treated based solely on 
risk factors, they are exposed to potential side effects without 
any improvement in their outcomes. Additionally, new meth-
ods to silence the genes related to the disease offer a promis-
ing strategy. The focus is shifting from surrogate and indirect 
measures of the disease to directly monitoring the beginning 
and evolution of plaque directly by the use of coronary CTA.

Visualization of plaque in asymptomatic patients and the 
use of machine learning and artificial intelligence (AI) to di-
rectly measure and characterize the consequences of plaque 
with serial measurements, present the opportunity for indi-
vidual and personalized treatments. With this personalized ap-
proach, the multiple pathways of CAD and subsequent treat-
ments may be evaluated by determining their effects on the 
evolution of plaque for each person. This will enable the use 
of personalized treatments to target modifiable risk factors, in-
corporating emerging gene-silencing techniques and outcome 
metrics like MACEs [14]. Evolving research is ongoing to in-
tegrate these developments to establish a fresh evidence base 
for the treatment of CAD [15].

Guidelines for personalized precision medicine tailored to 
each patient’s unique health needs and risks, whether high or 
low, are still lacking. However, recent reviews have begun to 
focus on this approach [11]. For example, in the Get With The 
Guidelines study, among 136,905 patients admitted for CAD, 
half had admission low-density lipoprotein (LDL) levels of < 
100 mg/dL, and 17.6% presented with LDL of < 70 mg/dL. 
Despite controlled LDL levels, cardiac events still occurred in 
these patients [16]. Furthermore, the FACTOR-64 trial, which 
evaluated coronary CTA in patients with diabetes and CAD, 
did not show a reduction in major cardiac events [17]. Manag-
ing risk factors alone is insufficient to prevent adverse cardiac 
outcomes. We will address the elements of a more comprehen-
sive treatment approach in this review.

CCTA

Coronary CTA performs comprehensive whole-heart analysis, 
and in particular is able to provide in-depth examination of 
plaque in the coronary arteries [18]. A recent consensus that 
graded various imaging modalities for atherosclerosis deter-
mined that coronary CTA is the most appropriate technique 
for atherosclerotic plaque evaluation [19]. Both standard and 
adaptive quantification/qualification of plaque and its subtypes 
can be performed, and recently it is even performed in an au-
tomated fashion with the use of various AI, machine learning, 
and deep learning programs [20, 21]. Robust data are emerging 
that plaque subtypes and atherosclerotic plaque characteristics 
may further risk-stratify patients, and proposals which specifi-
cally evaluate in-depth plaque are now being considered in 
several large clinical trials, replacing the traditional focus on 
MACE in previous studies [11, 22]. The plaque-based approach 
implements whole heart atherosclerosis phenotyping via CTA, 
which can allow for precision medicine by individualizing and 

staging each specific patient’s disease. For instance, AI-driven 
CTA can evaluate and grade each patient’s plaque subtypes, 
identify metrics such as atheroma volume, differentiate per-
centage of soft versus calcified plaque, and track these changes 
serially to determine the velocity of disease and/or the efficacy 
of treatments. In addition, coronary CTA is able to collect this 
information with fewer risks than invasive coronary angiogra-
phy [23]. These AI-based CTA grading systems have demon-
strated prognostic value and the ability to reclassify risk in a 
recent 10-year follow-up study, with an event rate approaching 
0% in individuals without atherosclerosis [24].

It is also vital to consider the practical applications regard-
ing mass utilization of CT screening on a population level. The 
ongoing TRANSFORM and TRANSCEND trials are currently 
evaluating several aspects of this, assessing serial CCTA moni-
toring of patients without any established CAD at baseline, fol-
lowed by individualized plaque reduction therapy and assess-
ment of long-term safety and costs related between treatment 
groups versus standard of care. In addition, several countries 
already engage in mass screening with CT/magnetic resonance 
imaging (MRI) on a population base. For instance, Japan has 
the highest number of both MRI and CT scanners per capita of 
any Organization for Economic Cooperation and Development 
(OECD) country. All citizens are recommended to undergo 
whole body MRI and/or CT screening starting around age 40 
- 50 as part of their general health screening program. This is 
in part due to not only their nationalized healthcare system but 
also several clinical trials of proven cost-effectiveness show-
ing the benefit of early disease identification and treatment by 
population imaging.

As written by Burch et al [25], studies have shown that 
CCTA is a cost-effective strategy for both initial and serial CAD 
evaluation. Even in low-to-intermediate risk patients, analy-
sis suggests the potential to reduce economic costs with better 
health outcomes compared to current standard of care testing. 
Of course, this does not obviate the need for continued prospec-
tive trials in the future to continue to evaluate the practicality, 
safety, radiation risk and economic burden of serial imaging; but 
so far, it is promising to see multiple trials suggesting that the 
use of CCTA can be a cost-effective and outcome improving 
strategy for CAD prevention and management [25].

It is established that CAD is driven by plaque; however, 
the precise pathways of the various subtypes and the factors 
that contribute to the natural progression of the disease remain 
to be elucidated. The clarification of the multiple pathways of 
plaque production, and the ability to serially measure the de-
rived metrics offer a pathway to the mitigation and eradication 
of the disease. Beyond LDL manipulation and evaluating sur-
rogate measures, a focus on multiple pathways of the disease, 
in combination with plaque-directed therapies, offers hope for 
improving our current approaches toward eradicating the dis-
ease. These potential pathways are shown in Figure 1.

Polygenic Risk Scores (PRSs)

Multiple lines of evidence suggest that the development of CAD 
can be partially predicted through genetic testing via genome-
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wide association studies (GWAS), with these genetic factors 
accounting for up to 50% of the disease [26]. The silencing of 
these influences, in combination with our current lifestyle ap-
proaches and pharmacological treatments, together with plaque-
derived endpoints, represents an evolving pathway. In particular, 
the single-nucleotide polymorphisms identified by GWAS that 
cause and predispose individuals to CAD, refine our knowledge 
of genetic sequences and amplify the personalized approach to 
treatments [27]. For example, the personalized risk scores de-
rived from GWAS have demonstrated utility in multiple fields, 
including preeclampsia/gestational hypertension [28], thoracic 
aortic aneurysms [29], and more recently also in CAD. Studies 
as part of the CARDIoGRAMplusCD4 Consortium, Biobank 
Japan, and EPIC-CVD, in particular, have provided evidence 
to suggest that several hundred loci may be mechanistically 
instrumental in the development of CAD. Furthermore, treat-
ments that target these genes (e.g., with methods such as CRIS-
PR-Cas9) may have the potential to prevent and treat CAD on 
an individual patient level [30-32]. Further investigation of PRS 
will continue to refine the genetic factors that drive CAD. The 
elucidation of the relevant genetic loci offers a laser and person-

alized approach that will define the multiple required treatment 
tailored and personalized to address the individuals’ unique mul-
tifactorial causes of CAD. Whether the presence of genetic risk 
is the first notice to start intensive therapy, or the phenotypic ex-
pression of disease with non-calcified plaque or calcified plaque 
is the starting point for aggressive therapy, remains unclear. 
However, a genetic test that has a high likelihood of predicting 
phenotypic disease may be simpler and have more widespread 
application than plaque imaging with coronary CTA.

Clonal Hematopoiesis

While it is well established that the incidence of cardiac events 
increases with age, the precise mechanisms by which aging 
contributes to CAD are still not fully understood. Clonal he-
matopoiesis is a process of cell replication and expansion, 
which if dysregulated (via introduction of a mutation), will lead 
to subsequent production of pathologic cells that differ from a 
patient’s normal occurring blood line. Often as a topic of in-
vestigation in the oncology field, it is also known that it can 

Figure 1. Summary of the pathway for the eradication of CAD. This general overview begins with identifying individuals with 
unknown risk, followed by testing coronary CTA and AI-based plaque analysis, combined with genetic profiling using a polygenic 
risk score (PRS) to assess risk. The next step is personalized therapy, concluding with ongoing follow-up to prevent future events. 
AI: artificial intelligence; CAD: coronary artery disease; CTA: computed tomographic angiography.
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also result by dysfunction of hematopoietic stem cells with ag-
ing. This occurs within the “inflamm-ageing” process of persis-
tent low-grade inflammation over time, with elevated levels of 
inflammatory cytokines such as interleukin (IL)-6, IL-1β and 
tumor necrosis factor, negatively affecting the bone marrow 
microenvironment and disrupting cell linage and differentiation 
[33]. The presence of mutations leading to clonal hematopoiesis 
rises proportionally with age, with a prevalence of 18.4% in the 
oldest population, with the most common mutated genes iden-
tified so far being DNMT3A, TET2, ASXL1, JAK2, and TP53 
[34]. These types of mutations have been called “clonal hemat-
opoiesis of indeterminate potential” (CHIP) and are thought to 
be a significant risk factor to drive the increase degree of CAD 
with aging. As CHIP occurs, it activates the inflammasome, re-
sulting in further inflammation and downstream progression of 
atherosclerosis [35]. Further understanding of the mechanisms 
of CHIP and how to prevent pathologic clonal hematopoiesis 
should also contribute to precision therapeutics for CAD pre-
vention measured with plaque metrics.

Telomeres

Telomeres are short repetitive deoxyribonucleic acid (DNA) 
strands at the ends of chromosomes that help protect them 
from degradation. With each replication over time, they be-
come shorter; and after reaching a critical length, they signal 
the DNA strand for degradation. When pathologically short-
ened or maintained beyond normal time limits, telomeres have 
been associated with a variety of conditions such as CAD and 
cancer. Progressive or accelerated rates of shortening have 
been implicated in biological aging [36] and may play a sig-
nificant role in cardiovascular pathology. In a study of patients 
with heart failure, telomere length was measured in circulating 
leukocytes and was found to be significantly shorter than in 
controls [37]. Also, individuals with CAD have been shown to 
have shorter telomer length compared to healthy patients [38]. 
The ability to regulate telomerase activity, to potentially limit 
pathological changes by telomerase reverse transcriptase inter-
ventions, is being investigated. However, as telomere length is 
also significantly related to conditions including malignancy 
and genetic disorders as well, there exists a legitimate concern 
of cancer induction, which is a limitation in the development of 
this therapy [39]. The Telomerase Activator to Reverse Immu-
nosenescence in Acute Coronary Syndrome (TACTIC) trial, a 
double-blind phase II pilot randomized controlled trial, inves-
tigating telomerase intervention in acute coronary syndrome, 
is awaiting publication [40]. We anticipate that subsequent 
studies evaluating telomeres in other areas of cardiac disease, 
such as heart failure, will provide further insight into the utility 
of this potential therapeutic modality. It will be feasible to use 
coronary CTA as a tool to study telomere interventions.

AI in Cardiac Imaging

Coronary CTA is a noninvasive imaging modality that allows 
in-depth analysis of coronary artery stenosis, plaque analysis, 

volume composition and quantification, and fractional flow 
reserve [18, 41]. Coronary CTA has been used across multiple 
pharmacological and non-pharmacological interventional trials 
to evaluate plaque regression and stabilization [11]. It is well 
established that plaque composition, and particularly plaques 
with high-risk features, is an important predictor of future car-
diovascular events. Low attenuation plaque, defined as ≤ 30 
Hounsfield units (HU) plaque, is lipid-rich, has a necrotic core, 
and is hypoechoic on IVUS [42.] In a post-hoc analysis of the 
SCOT-HEART (Scottish Computed Tomography of the Heart) 
trial, low attenuation plaque was found to be the strongest pre-
dictor of fatal and nonfatal myocardial infarction among cardio-
vascular risk scores, including coronary artery calcium score or 
obstructive coronary artery stenosis [43]. Large registries such 
as the CONFIRM have demonstrated the prognostic utility of 
coronary CT, the stenosis grading, and plaque visualization [44].

Coronary CT technology has been continually improv-
ing and evolving, becoming a central tool for noninvasively 
investigating coronary plaque. With advances in CT innova-
tion, spatial resolution has improved from 0.400 - 0.500 mm 
in conventional CT to 0.150 - 0.200 mm range in ultra-high-
resolution CT with photon counting [45]. Thus, with enhanced 
spatial resolution, we can anticipate even greater accuracy 
when combining advances in AI and software to implement 
plaque-directed therapy [46].

Furthermore, the integration of flow measurements de-
rived from CT imaging has proven to be of vital clinical utility 
[12]. The PRECISE trial, a pragmatic, randomized clinical trial, 
evaluated a CT-driven precision strategy - risk-guided, patient-
specific testing deferral for minimal-risk patients combined with 
coronary CTA and selective fractional flow reserve computed 
tomography (FFRCT) - against usual care. The trial demonstrat-
ed that the use of coronary CTA decreased the number of unnec-
essary catheterizations and improved the accuracy of identifying 
the need for invasive coronary angiograms for obstructive CAD 
in the precision strategy arm, compared to usual care [47].

In the rapidly emerging field of AI-driven coronary CTA, 
studies have shown that, in addition to enabling high through-
put and rapid analysis of big data, it provides more accurate 
and consistent serial evaluations of CAD than human readers 
can achieve. The CLARIFY (CTEvaluation by Artificial Intel-
ligence for Atherosclerosis, Stenosis and Vascular Morpholo-
gy) studies has demonstrated that AI applied to coronary CTA 
is equal or superior to human experts, near-infrared spectros-
copy (NIRS), IVUS, and quantitative coronary angiography 
(QCA) [5, 48, 49]. Ongoing registries such as CONFIRM-2 
[50], among others are ongoing to help clarify the significant 
potential of AI in coronary CTA to contribute to improved 
clinical decision making and patient outcomes. The CERTAIN 
trial demonstrated the effectiveness of the improved diagnostic 
accuracy while reducing unnecessary downstream utilization 
and invasive testing, by using machine learning and AI [51]. 
The large randomized controlled trial TRANSFORM (Clini-
calTrials.gov Identifier: NCT06112418), will evaluate the use 
of plaque analysis and quantification as primary prevention 
strategy with the use of multiple plaque modifying drugs [15]. 
Results are expected to be released in 2028 or before.

Pericoronary fat exerts a paracrine function around the 
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coronary arteries, secreting inflammatory cytokines that close-
ly interact with the vascular wall. The CT measurement tool is 
called the fat attenuation index (FAI) (-190 to -30 HU) [52], 
and a recent metanalysis showed that increased FAI was as-
sociated with increased MACE risk, making this a promising 
prognostication modality and also a therapeutic end point [53] 
even from pre-contrast scans [54]. Recently published, FAI 
demonstrated in the ORFAN study to be prognostic in a large-
scale population, suggesting also that this could be an alterna-
tive and addition to standard risk evaluation [55].

Some have raised concern about radiation exposure when 
considering plaque-directed therapy. As shown by Nassen-
stein’s group, CCTA AI programs, such as those utilizing deep 
neural networks, can fully automate and enhance CT scan 
ranges, thereby lessening the effort needed to be performed 
by the staff and more importantly, reducing radiation expo-
sure and improving patient safety [56]. In fact, larger trials 
such as the “PROspective multicenter registry on radiaTion 
dose Estimates of cardiac CT angIOgraphy iN daily practice 
(PROTECTION VI)” showed that there has been dramatic 
improvement with radiation dose reduction in CCTA on an 
international scale, such that utilization of exposure dose low-
ering strategies which makes CCTA feasible even in daily 
practice [57].

Similarly, a large randomized clinical trial, the “Lower Ra-
diation Dosing in Cardiac CT Angiography: The CONVERGE 
Registry” demonstrated that high resolution scanners, (e.g., 
256 - row scanners or higher), afforded significantly less radia-
tion and contrast dosing than 64-row scanners across multiple 
variables (e.g., body habitus, body mass index (BMI), etc.); 
overall providing better diagnostic accuracy with improved 
patient exposure safety [58]. More recently, the emerging 
technology revolution of photon-counting CT (PCCT) prom-
ises even higher resolution images with less radiation, needing 
not only less scanning time than conventional CTs, but vastly 
improved image resolution and quality, with reduced radiation 
dosing. Preliminary studies suggest that PCCT provides im-
proved downstream diagnostic ability, reduced radiation, and 
comfort for patients, though further studies to see its effect on 
health outcomes and safety remain to be established.

Ribonucleic Acid (RNA) Therapeutics

RNA or DNA therapies are composed of exogenous sequences 
of nucleic acids. These molecules can regulate a wide variety of 
biological functions and are specific in their actions due to their 
uniquely programmed genetic sequence targets. Various modali-
ties exist for treatments with RNAs, such as antisense oligonu-
cleotide (ASO), RNA interference (RNAi) for gene silencing, 
small interfering RNAs (siRNAs), microRNAs (miRNAs), and 
RNA aptamers. Messenger RNA (mRNA) therapeutics are also 
used heavily in cardiovascular research and medicine, including 
agents such as mipomersen (ASO), pelacarsen (ASO), inclisiran 
(siRNA), olpasiran (siRNA) [59], among others.

For example, efforts have been made for reversing myo-
cardial ischemia with vascular endothelial growth factor RNA-
based therapies in heart failure associated with Chagas disease, 

among others [59]. RNA-based gene therapies via viral vectors 
have also shown to be helpful for cardiomyocyte survival and 
proliferation in myocardial injury models and are translating 
to clinical trials that have shown early safety and efficacy. This 
therapy modality has also opened a new door for cardiovas-
cular “vaccines” aimed at prevention and treatment of heart 
disease, with further research trials currently ongoing. Finally, 
miRNA-based therapies are emerging as promising treatment 
avenues for atherosclerosis [60], especially following the rec-
ognition of this field with the 2024 Nobel Prize. A summary of 
the mechanisms and approach is shown in Figure 2.

Discussion

Despite it being over two centuries since the description of an-
gina pectoris, CAD remains a foremost global cause of death. 
Current approaches primarily focus on population-wide risk 
factors, which have reduced mortality. However, studies clear-
ly demonstrate the need for more personalized medicine to tai-
lor treatments to individuals, as population data are often inad-
equate to address each patient’s unique causes of the disease. 
Shifting towards the personalized approach that considers the 
genetic, environmental, and lifestyle factors unique to each 
patient will include methods which identify genetic markers 
that may predispose individuals to more aggressive forms of 
plaque formation, and tailoring interventions accordingly.

Methodological advancements outlined in this article are 
reshaping our understanding and treatment of CAD. Coro-
nary CTA and the direct visualization of plaque formation, 
composition, and progression in the coronary arteries allows 
for more precise assessment of the risk and extent of CAD. 
Inflammation plays a critical role in the development and pro-
gression of atherosclerotic plaque. Investigating treatments 
that promote the stabilization or regression of plaque and 
targeting it from multiple facets via lifestyle changes, phar-
maceuticals, and vaccines like treatments offer the potential 
to limit development of CAD. Implementing these strategies 
requires a multidisciplinary approach, integrating cardiology, 
genetics, imaging, and personalized medicine to shift the fo-
cus from merely controlling risk factors and cholesterol levels 
and other surrogate measures to actively prevent the driving 
causes of CAD.

The approach of plaque-directed therapy with the wide 
range of personalized treatments, including existing lifestyle 
medications and genetic silence, is audacious but feasible. It is 
important to recognize the limitations in translating these ad-
vances into widespread clinical practice. It may be unrealistic 
to monitor disease progression, as envisioned globally. Rather, 
once the pathways are defined for wide scale application, we will 
need to develop a more cost-effective and pragmatic approach.

As recently published in the European Heart Journal of 
Quality Care Clinical Outcomes, these studies demonstrated 
that compared with standard management, utilization of AI-
augmented CCTA risk assessment optimizes cost effectiveness 
and improves cardiac treatment outcomes [61]. In the UK, 
CCTA is already a first-line test for CAD evaluation. How-
ever, it is well known that cardiac events can occur even with-
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out obstructive CAD. Ongoing studies, such as those currently 
done at the University of Oxford, are assessing the long-term 
cost-effectiveness, safety, and health outcomes of routine use 
of AI-augmented CCTA, which will hopefully further establish 
the ongoing benefit of improving patient outcomes though se-
rial imaging [61]. The American Heart Association has also 
published a recent statement in 2024, titled “Value Creation 
Through Artificial Intelligence and Cardiovascular Imaging”, 
which emphasizes the importance of making a framework of 
CCTA AI utilization, and outlines the various ways it has al-
ready shown potential for improving diagnosis, management 
and reducing cardiovascular events via a safe, cost-efficient 
real-world setting [62]. AI approaches have moved to predict-
ing standard of care guided revascularization [63].

Thus, we also await the development of tools that are less 
expensive, involve less radiation, and are more widely avail-
able. Highly specific and sensitive genetic testing, combined 
with AI-based analysis that includes modifiable and traditional 
risk factors and accurately prognosticates disease develop-
ment, including the 50% influenced by genetics, remains a 
missing link that could reduce dependence on serial imaging 
to achieve personalized treatment plans.

For now, the integration of these technologies with plaque-
directed endpoints promises to revolutionize CAD manage-
ment, providing a comprehensive pathway to combat heart 
disease effectively using a multifaceted approach (Fig. 1). 
The culmination of all these emerging therapeutics including 

vaccine like therapies, will allow physicians to remain a step 
ahead of CAD, allowing not only improvements in treatment, 
but more importantly, leading to prevention of heart disease. 
Instead of managing surrogate measures, there is continued 
optimism we will be able to identify patients before onset of 
disease at the preventive stage, and treating its earliest signs. 
Finally, by addressing the multiple pathological pathways, 
identifying and treating genetic pathways, tailoring treatments 
to individual needs, and tracking these changes over time with 
new tools such as AI [4, 64], we have delineated a strategy to 
mitigate the consequences of CAD and possibly eradicate the 
disease itself.
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